31.5.10

การผลิตไฟฟ้าด้วยเซลล์แสงอาทิตย์

การผลิตกระแสไฟฟ้าด้วยเซลล์แสงอาทิตย์ แบ่งออกเป็น 3 ระบบ คือ
การผลิตกระแสไฟฟ้าด้วยเซลล์แสงอาทิตย์แบบอิสระ (PV Stand alone system)
เป็นระบบผลิตไฟฟ้าที่ได้รับการออกแบบสำหรับใช้งานในพื้นที่ชนบทที่ไม่มีระบบสายส่งไฟฟ้า อุปกรณ์ระบบที่สำคัญประกอบด้วยแผงเซลล์แสงอาทิตย์ อุปกรณ์ควบคุมการประจุแบตเตอรี่ แบตเตอรี่ และอุปกรณ์เปลี่ยนระบบไฟฟ้ากระแสตรงเป็นไฟฟ้ากระแสสลับแบบอิสระ



การผลิตกระแสไฟฟ้าด้วยเซลล์แสงอาทิตย์แบบต่อกับระบบจำหน่าย (PV Grid connected system)
เป็นระบบผลิตไฟฟ้าที่ถูกออกแบบสำหรับผลิตไฟฟ้าผ่านอุปกรณ์เปลี่ยนระบบไฟฟ้ากระแสตรงเป็นไฟฟ้ากระแสสลับ เข้าสู่ระบบสายส่งไฟฟ้าโดยตรง ใช้ผลิตไฟฟ้าในเขตเมือง หรือพื้นที่ที่มีระบบจำหน่ายไฟฟ้าเข้าถึง อุปกรณ์ระบบที่สำคัญประกอบด้วยแผงเซลล์แสงอาทิตย์ อุปกรณ์เปลี่ยนระบบไฟฟ้ากระแสตรงเป็นไฟฟ้ากระแสสลับชนิดต่อกับระบบจำหน่ายไฟฟ้า



การผลิตกระแสไฟฟ้าด้วยเซลล์แสงอาทิตย์แบบผสมผสาน (PV Hybrid system)
เป็นระบบผลิตไฟฟ้าที่ถูกออกแบบสำหรับทำงานร่วมกับอุปกรณ์ผลิตไฟฟ้าอื่นๆ เช่น ระบบเซลล์แสงอาทิตย์กับพลังงานลม และเครื่องยนต์ดีเซล ระบบเซลล์แสงอาทิตย์กับพลังงานลม และไฟฟ้าพลังน้ำ เป็นต้น โดยรูปแบบระบบจะขึ้นอยู่กับการออกแบบตามวัตถุประสงค์โครงการเป็นกรณีเฉพาะ


หลักการทำงาน เซลล์แสงอาทิตย์

หลักการทำงานเซลล์แสงอาทิตย์
การทำงานของเซลล์แสงอาทิตย์ เป็นขบวนการเปลี่ยนพลังงานแสงเป็นกระแสไฟฟ้าได้โดยตรง โดยเมื่อแสงซึ่งเป็นคลื่นแม่เหล็กไฟฟ้าและมีพลังงานกระทบกับสารกึ่งตัวนำ จะเกิดการถ่ายทอดพลังงานระหว่างกัน พลังงานจากแสงจะทำให้เกิดการเคลื่อนที่ของกระแสไฟฟ้า (อิเลคตรอน) ขึ้นในสารกึ่งตัวนำ จึงสามารถต่อกระแสไฟฟ้าดังกล่าวไปใช้งานได้ (ตามรูป)

1. n - type ซิลิคอน ซึ่งอยู่ด้านหน้าของเซลล์ คือ สารกึ่งตัวนำที่ได้การโดปปิ้งด้วยสารฟอสฟอรัส มีคุณสมบัติเป็นตัวให้อิเล็กตรอนเมื่อรับพลังงานจากแสงอาทิตย์
p - type ซิลิคอน คือสารกึ่งตัวนำที่ได้การโดปปิ้งด้วยสารโบรอน ทำให้โครงสร้างของอะตอมสูญเสียอิเล็กตรอน (โฮล) เมื่อรับพลังงาน จากแสงอาทิตย์จะทำหน้าที่เป็นตัวรับอิเล็กตรอน เมื่อนำซิลิคอนทั้ง 2 ชนิด มาประกบต่อกันด้วย p - n junction จึงทำให้เกิดเป็น " เซลล์แสงอาทิตย์ " ในสภาวะที่ยังไม่มีแสงแดด n - type ซิลิคอนซึ่งอยู่ด้านหน้าของเซลล์ ส่วนประกอบส่วนใหญ่พร้อมจะให้อิเล็กตรอน แต่ก็ยังมีโฮลปะปนอยู่บ้างเล็กน้อย ด้านหน้าของ n - type จะมีแถบโลหะเรียกว่า Front Electrode ทำหน้าที่เป็นตัวรับอิเล็กตรอน ส่วน p - type ซิลิคอนซึ่งอยู่ด้านหลังของเซลล ์ โครงสร้างส่วนใหญ่เป็นโฮล แต่ยังคงมีอิเล็กตรอนปะปนบ้างเล็กน้อย ด้านหลังของ p - type ซิลิคอนจะมีแถบโลหะเรียกว่า Back Electrode ทำหน้าที่เป็นตัวรวบรวมโฮล

2. เมื่อมีแสงอาทิตย์ตกกระทบ แสงอาทิตย์จะถ่ายเทพลังงานให้กับอิเล็กตรอนและโฮล ทำให้เกิดการเคลื่อนไหว เมื่อพลังสูงพอทั้งอิเล็กตรอนและโฮลจะวิ่งเข้าหาเพื่อจับคู่กัน อิเล็กตรอนจะวิ่งไปยังชั้น n - type และโฮลจะวิ่งไปยังชั้น p type

3. อิเล็กตรอนวิ่งไปรวมกันที่ Front Electrode และโฮลวิ่งไปรวมกันที่ Back Electrode เมื่อมีการต่อวงจรไฟฟ้าจาก Front Electrode และ Back Elec trode ให้ครบวงจร ก็จะเกิดกระแสไฟฟ้าขึ้น เนื่องจากทั้งอิเล็กตรอนและโฮลจะวิ่งเพื่อจับคู่กัน

ขบวนการผลิตเซลล์แสงอาทิตย์

วัสดุที่ใช้ทำเซลล์แสงอาทิตย์

วัสดุสำคัญที่ใช้ทำเซลล์แสงอาทิตย์ ที่ใช้มากที่สุดในปัจจุบันได้แก่ สารซิลิคอน (Si) ซึ่งเป็นสารชนิดเดียวกับที่ใช้ทำชิพในคอมพิวเตอร์และเครื่องอิเล็กทรอนิกส์ ซิลิคอนเป็นสารซึ่งไม่เป็นพิษ มีการนำมาผลิตเซลล์แสงอาทิตย์ใช้กันอย่างแพร่หลายเพราะมีราคาถูก คงทน และเชื่อถือได้ นอกจากนี้ยังมีวัสดุชนิดอื่นที่สามารถนำมาผลิตเซลล์แสงอาทิตย์ได้ เช่น แกลเลียมอาเซไนด์ CIS และ แคดเมียมเทลเลอไรด์ แต่ยังมีราคาสูง และบางชนิดยังไม่มีการพิสูจน์เรื่องอายุการใช้งานว่าสามารถใช้งานได้นาน

ข้อเสียของ Si : การทำให้บริสุทธิ์และอยู่ในรูปสารที่พร้อมจะทำเซลล์ฯ มีราคาแพง และ แตกหักง่ายในขบวนการผลิต

ขั้นตอนการผลิตสารซิลิคอนบริสุทธิ์

1) การผลิต MG-Si จากหินควอทไซต์หรือทราย
SiO2+ 2C ----> Si + 2CO (ปฏิกิริยาภายในเตาหลอม)
ความบริสุทธิของ Si 98 - 99%
2) การผลิต SeG-Si จาก MG-Si
2.1) เปลี่ยนสถานะ Si เป็นแก๊ส โดยวิธี Fractional Distillation
Si + 3 HCl -------> SiHCl3+ H2
2.2) SiHCl3 ทำปฏิกริยากับ H2 ได้ Si บริสุทธิ์ 99.999%
SiHCl3 + H2 -------> Si + HCl
เป็นการทำ Si ให้บริสุทธิ์ ขั้นตอนนี้ได้ Polycrystal


ขบวนการผลิตเซลล์แสงอาทิตย์ แบบผลึกเดี่ยว ( Single Crystalline )
การผลิตเซลล์แสงอาทิตย์ แบบผลึกเดี่ยว ( Single Crystalline ) หรือที่รู้จักกันในชื่อ Mono-Crystallineการเตรียมสารซิลิคอนชนิดนี้ เริ่มต้นจากนำสารซิลิคอนซึ่งผ่านการทำให้เป็นก้อนที่มีความบริสุทธิ์สูงมาก (99.999%) มาหลอมละลายในเตา Induction Furnace ที่อุณหภูมิสูงถึง 1,500 องศาเซลเซียส เพื่อทำการสร้างแท่งผลึกเดี่ยวขนาดใหญ่ (เส้นผ่านศูนย์กลาง 6-8 นิ้ว) พร้อมกับใส่สารเจือปน Boron เพื่อทำให้เกิด P-type แล้วทำให้เกิดการเย็นตัวจับตัวกันเป็นผลึกด้วย Seed ซึ่งจะตกผลึกมีขนาดหน้าตัดใหญ่ แล้วค่อยๆ ดึงแท่งผลึกนี้ขึ้นจากเตาหลอม ด้วยเทคโนโลยีการดึงผลึก จะได้แท่งผลึกยาวเป็นรูปทรงกระบอก คุณภาพของผลึกเดี่ยวจะสำคัญมากต่อคุณสมบัติของเซลล์แสงอาทิตย์ จากนั้นนำแท่งผลึกมาตัดให้เป็นแผ่นบาง ๆ ด้วยลวดตัดเพชร (Wire Cut) เรียกว่า เวเฟอร์ ซึ่งจะได้แผ่นผลึกมีความหนาประมาณ 300 ไมโครเมตร และขัดความเรียบของผิว จาก นั้นก็จะนำไปเจือสารที่จำเป็นในการทำให้เกิดเป็น p-n junction ขึ้นบนแผ่นเวเฟอร์ ด้วยวิธีการ Diffusion ที่อุณหภูมิระดับ 1,000 องศาเซลเซียสจากนั้นนำไปทำขั้วไฟฟ้าเพื่อนำกระแสไฟออกใช้ ที่ผิวบนจะเป็นขั้วลบ ส่วนผิวล่างเป็นขั้วบวก ขั้นตอนสุดท้ายจะเป็นการเคลือบฟิลม์ผิวหน้าเพื่อป้องกันการสะท้อนแสงให้น้อยที่สุด ตอนนี้จะได้เซลล์ที่พร้อมใช้งาน หลังจากนั้นก็นำไปประกอบเข้าแผงโดยใช้กระจกเป็นเกราะป้องกันแผ่นเซลล์ และใช้ซิลิโคน และ อีวีเอ (Ethelele Vinyl Acetate) ช่วยป้องกันความชื้น ในการใช้งานจริง เราจะนำเซลล์แต่ละเซลล์มาต่ออนุกรมกันเพื่อเพิ่มแรงเคลื่อนไฟฟ้าให้ได้ตามต้องการ


การผลิตเซลล์แสงอาทิตย์ แบบผลึกรวม ( Poly Crystalline )การผลิตเซลล์แสงอาทิตย์โดยวิธีนี้ จะมีค่าใช้จ่ายที่ถูกกว่าวิธีแรก คือการทำแผ่นเซลล์ จะใช้วิธีการหลอมสารซิลิคอนให้ละลายพร้อมกับใส่สารเจือปน Boron เพื่อทำให้เกิด P-type แล้วเทลงในแบบพิมพ์ เมื่อสารละลายซิลิคอนแข็งตัวก็จะได้เป็นแท่งซิลิคอนแบบผลึกรวม ( ตกผลึกไม่พร้อมกัน ) จากนั้นนำไปตัดเป็นแผ่นเช่นเดียวกับแบบผลึกเดี่ยว ความแตกต่างระหว่างแบบผลึกเดี่ยวและแบบผลึกรวมสังเกตได้จากผิวผลึก ถ้ามีโทนสีที่แตกต่างกันซึ่งเกิดจากผลึกเล็กq หลายผลึกในแผ่นเซลล์จะเป็นแบบผลึกรวม ในขณะที่แบบผลึกเดี่ยวจะเห็นเป็นผลึกเนื้อเดียว คือ มีสีเดียวตลอดทั้งแผ่น ส่วนกรรมวิธีการผลิตเซลล์ที่เหลือจะเหมือนกัน เซลล์แสงอาทิตย์แบบผลึกรวม (Poly Crystalline) จะให้ประสิทธิภาพต่ำกว่าแบบผลึกเดี่ยว ประมาณ 2-3 % อย่างไรก็ตามเซลล์ทั้ง 2 ชนิด มีข้อเสียในการผลิต คือ แตกหักง่ายเช่นกัน

ส่วนประกอบของเซลล์แสงอาทิตย์



แรงเคลื่อนไฟฟ้าที่ผลิตขึ้นจากเซลล์แสงอาทิตย์เพียงเซลล์เดียวจะมีค่าต่ำมาก การนำมาใช้งานจะต้องนำเซลล์หลาย ๆ เซลล์ มาต่อกันแบบอนุกรมเพื่อเพิ่มค่าแรงเคลื่อนไฟฟ้าให้สูงขึ้น เซลล์ที่นำมาต่อกันในจำนวนและขนาดที่เหมาะสมเรียกว่า แผงเซลล์แสง อาทิตย์ (Solar Module หรือ Solar Panel)
การทำเซลล์แสงอาทิตย์ให้เป็นแผงก็เพื่อความสะดวกในการนำไปใช้งาน ด้านหน้าของแผงเซลล์ ประกอบด้วย แผ่นกระจกที่ มีส่วนผสมของเหล็กต่ำ ซึ่งมีคุณสมบัติในการยอมให้แสงผ่านได้ดี และยังเป็นเกราะป้องกันแผ่นเซลล์อีกด้วย แผงเซลล์จะต้องมีการ ป้องกันความชื้นที่ดีมาก เพราะจะต้องอยู่กลางแดดกลางฝนเป็นเวลายาวนาน ในการประกอบจะต้องใช้วัสดุที่มีความคงทนและป้อง กันความชื้นที่ดี เช่น ซิลิโคนและ อีวีเอ (Ethelele Vinyl Acetate) เป็นต้น เพื่อเป็นการป้องกันแผ่นกระจกด้านบนของแผงเซลล์ จึง ต้องมีการทำกรอบด้วยวัสดุที่มีความแข็งแรง แต่บางครั้งก็ไม่มีความจำเป็น ถ้ามีการเสริมความแข็งแรงของแผ่นกระจกให้เพียงพอ ซึ่งก็สามารถทดแทนการทำกรอบได้เช่นกัน ดังนั้นแผงเซลล์จึงมีลักษณะเป็นแผ่นเรียบ (laminate) ซึ่งสะดวกในการติดตั้ง

Solar Heater

Link:พลังงานแสงอาทิตย์ผลิตน้ำร้อน (ระบบผสมผสาน)





เครื่องทำน้ำร้อนระบบโซล่าร์


เป็นระบบการทำน้ำอุ่นด้วยแสงอาทิตย์ที่มีอยู่อย่างไม่จำกัด เมื่อแสงอาทิตย์ตกกระทบแผงรับพลังงานแสงอาทิตย์ระบบจะเริ่มทำงาน แสงอาทิตย์ที่ตกกระทบ จะถูกดูดซับและส่ง ถ่ายความร้อนให้กับน้ำ ซึ่งอยู่ภายในท่อทองแดงที่ยึดแน่นด้วยแรงอัดด้านใต้แผงรับพลังงานแสงอาทิตย์ น้ำจะเกิดการไหลเวียนตามธรรมชาติ และรับความร้อนจากพลังงานแสงอาทิตย์เป็นเช่นนี้ตลอดเวลา น้ำร้อนในถังเก็บจะมีอุณหภูมิสูงถึง 60-80 องศาเซลเซียล ต่อเข้ากับระบบท่อน้ำร้อนที่สร้างเตรียมไว้หรือมีอยู่แล้วก็สามารถนำน้ำไปใช้งานได้ การติดตั้งสามารถทำได้ทั้งบนหลังคาทุกรูปแบบและตั้งบนพื้น (แล้วแต่ความต้องการของลูกค้า) และมีระบบไฟฟ้าสำรองสำหรับเวลาที่ไม่มีแดดหรือแสงอาทิตย์ไม่เพียงพอ(ฤดูฝน) ซึ่งสามารถมั่นใจได้ว่าคุณจะมีน้ำใช้อย่างแน่นอน (ระบบไฟฟ้าจะถูกนำมาใช้เฉพาะเวลาจำเป็นเท่านั้น) และมีฉนวนกันความร้อนโฟมโปลียูเรเธน ช่วยเก็บพลังงานแสงอาทิตย์ไว้ใช้ในยามค่ำคืน ทำให้คุณแน่ใจได้ว่าคุณจะมีน้ำอุ่นใช้อย่างแน่นนอนในทุกๆวัน


Description
Indirect

CX

Overall Dimension


Capacity
180 Lites
300 Lites

Overall Dimension (LxWxH)
1490 x 2430 x 510 mm.
2290 x 2430 x 510 mm.

Outer Tank Diameter
510 mm.
510 mm.

Overall Weight ( Empty )
89 kg.
135 kg.

Overall Weight ( Full )
274 kg.
445 kg.

Storage Tank


Outer Cylinder Case Material
Zinclume

Tank Insulation
High Density Pressure Injected Polyurethane Foam

End Cover Material
Zinclume

Collector


Design
Plate & Tube

Plate Material
Aluminium / Copper

Surface Coating
Matt Black Polyester

Riser Tube Material
Copper

Rise Tube Quantity
6

Height
80 mm

Net Absorber Area
2 sqm.

Casing Material
Zinclume

Glass Material
Tempered Glass

Glass Thickness
4mm Thickness

คุณสมบัติและตัวแปรที่สำคัญของเซลล์แสงอาทิตย์

คุณสมบัติและตัวแปรที่สำคัญของเซลล์แสงอาทิตย์
ตัวแปรที่สำคัญที่มีส่วนทำให้เซลล์แสงอาทิตย์มีประสิทธิภาพการทำงานในแต่ละพื้นที่ต่างกัน และมีความสำคัญในการพิจารณานำไปใช้ในแต่ละพื้นที่ ตลอดจนการนำไปคำนวณระบบหรือคำนวณจำนวนแผงแสงอาทิตย์ที่ต้องใช้ในแต่ละพื้นที่ มีดังนี้

1. ความเข้มของแสง
กระแสไฟ (Current) จะเป็นสัดส่วนโดยตรงกับความเข้มของแสง หมายความว่าเมื่อความเข้มของแสงสูง กระแสที่ได้จากเซลล์แสงอาทิตย์ก็จะสูงขึ้น ในขณะที่แรงดันไฟฟ้าหรือโวลต์แทบจะไม่แปรไปตามความเข้มของแสงมากนัก ความเข้มของแสงที่ใช้วัดเป็นมาตรฐานคือ ความเข้มของแสงที่วัดบนพื้นโลกในสภาพอากาศปลอดโปร่ง ปราศจากเมฆหมอกและวัดที่ระดับน้ำทะเลในสภาพที่แสงอาทิตย์ตั้งฉากกับพื้นโลก ซึ่งความเข้ม ของแสงจะมีค่าเท่ากับ 100 mW ต่อ ตร.ซม. หรือ 1,000 W ต่อ ตร.เมตร ซึ่งมีค่าเท่ากับ AM 1.5 (Air Mass 1.5) และถ้าแสงอาทิตย์ทำมุม 60 องศากับพื้นโลกความเข้มของแสง จะมีค่าเท่ากับประมาณ 75 mW ต่อ ตร.ซม. หรือ 750 W ต่อ ตร.เมตร ซึ่งมีค่าเท่ากับ AM2 กรณีของแผงเซลล์แสงอาทิตย์นั้นจะใช้ค่า AM 1.5 เป็นมาตรฐานในการวัดประสิทธิภาพของแผง

2. อุณหภูมิ
กระแสไฟ (Current) จะไม่แปรตามอุณหภูมิที่เปลี่ยนแปลงไป ในขณะที่แรงดันไฟฟ้า (โวลท์) จะลดลงเมื่ออุณหภูมิสูงขึ้น ซึ่งโดยเฉลี่ยแล้วทุกๆ 1 องศาที่เพิ่มขึ้น จะทำให้แรงดันไฟฟ้าลดลง 0.5% และในกรณีของแผงเซลล์แสงอาทิตย์มาตรฐานที่ใช้กำหนดประสิทธิภาพของแผงแสงอาทิตย์คือ ณ อุณหภูมิ 25 องศา C เช่น กำหนดไว้ว่าแผงแสงอาทิตย์มีแรงดันไฟฟ้าที่วงจรเปิด (Open Circuit Voltage หรือ V oc) ที่ 21 V ณ อุณหภูมิ 25 องศา C ก็จะหมายความว่า แรงดันไฟฟ้าที่จะได้จากแผงแสงอาทิตย์ เมื่อยังไม่ได้ต่อกับอุปกรณ์ไฟฟ้า ณ อุณหภูมิ 25 องศา C จะเท่ากับ 21 V ถ้าอุณหภูมิสูงกว่า 25 องศา C เช่น อุณหภูมิ 30 องศา C จะทำให้แรงดันไฟฟ้าของแผงแสงอาทิตย์ลดลง 2.5% (0.5% x 5 องศา C) นั่นคือ แรงดันของแผงแสงอาทิตย์ที่ V oc จะลดลง 0.525 V (21 V x 2.5%) เหลือเพียง 20.475 V (21V – 0.525V) สรุปได้ว่า เมื่ออุณหภูมิสูงขึ้น แรงดันไฟฟ้าก็จะลดลง ซึ่งมีผลทำให้กำลังไฟฟ้าสูงสุดของแผงแสงอาทิตย์ลดลงด้วย

จากข้อกำหนดดังกล่าวข้างต้น ก่อนที่ผู้ใช้จะเลือกใช้แผงแสงอาทิตย์ จะต้องคำนึงถึงคุณสมบัติของแผงที่ระบุไว้ในแผงแต่ละชนิดด้วยว่า ใช้มาตรฐานอะไร หรือมาตรฐานที่ใช้วัดแตกต่างกันหรือไม่ เช่นแผงชนิดหนึ่งระบุว่า ให้กำลังไฟฟ้าสูงสุดได้ 80 วัตต์ ที่ความเข้มแสง 1,200 W ต่อ ตร.เมตร ณ อุณหภูมิ 20 องศา C ขณะที่อีกชนิดหนึ่งระบุว่า ให้กำลังไฟฟ้าสูงสุดได้ 75 วัตต์ ที่ความเข้มแสง 1,000 W ต่อ ตร.เมตร และอุณหภูมิมาตรฐาน 25 องศา C แล้ว จะพบว่าแผงที่ระบุว่าให้กำลังไฟฟ้า 80 W จะให้กำลังไฟฟ้าต่ำกว่า จากสาเหตุดังกล่าว ผู้ที่จะใช้แผงจึงต้องคำนึงถึงข้อกำหนดเหล่านี้ในการเลือกใช้แผงแต่ละชนิดด้วย

การผลิตไฟฟ้าจากเซลล์แสงอาทิตย์มีจุดเด่นที่สำคัญ แตกต่างจากวิธีอื่นหลายประการ ดังต่อไปนี้

ไม่มีชิ้นส่วนที่เคลื่อนไหวในขณะใช้งาน จึงทำให้ไม่มีมลภาวะทางเสียง
ไม่ก่อให้เกิดมลภาวะเป็นพิษจากขบวนการผลิตไฟฟ้า
มีการบำรุงรักษาน้อยมากและใช้งานแบบอัตโนมัติได้ง่าย
ประสิทธิภาพคงที่ไม่ขึ้นกับขนาด
สามารถผลิตเป็นแผงขนาดต่างๆ ได้ง่าย ทำให้สามารถผลิตได้ปริมาณมาก
ผลิตไฟฟ้าได้แม้มีแสงแดดอ่อนหรือมีเมฆ
เป็นการใช้พลังงานแสงอาทิตย์ที่ได้มาฟรีและมีไม่สิ้นสุด
ผลิตไฟฟ้าได้ทุกมุมโลกแม้บนเกาะเล็กๆ กลางทะเล บนยอดเขาสูง และในอวกาศ
ได้พลังงานไฟฟ้าโดยตรงซึ่งเป็นพลังงานที่นำมาใช้ได้สะดวกที่สุดดังนั้น ไฟฟ้าจากเซลล์แสงอาทิตย์จึงเป็นความหวังของคนทั่วโลก ในศตวรรษที่ 21 ที่จะมาถึงในอีกไม่นาน

Solar lighting


The history of lighting is dominated by the use of natural light. The Romans recognized a right to light as early as the 6th century and English law echoed these judgments with the Prescription Act of 1832.In the 20th century artificial lighting became the main source of interior illumination but daylighting techniques and hybrid solar lighting solutions are ways to reduce energy consumption.

Daylighting systems collect and distribute sunlight to provide interior illumination. This passive technology directly offsets energy use by replacing artificial lighting, and indirectly offsets non-solar energy use by reducing the need for air-conditioning. Although difficult to quantify, the use of natural lighting also offers physiological and psychological benefits compared to artificial lighting. Daylighting design implies careful selection of window types, sizes and orientation; exterior shading devices may be considered as well. Individual features include sawtooth roofs, clerestory windows, light shelves, skylights and light tubes. They may be incorporated into existing structures, but are most effective when integrated into a solar design package that accounts for factors such as glare, heat flux and time-of-use. When daylighting features are properly implemented they can reduce lighting-related energy requirements by 25%.

Hybrid solar lighting is an active solar method of providing interior illumination. HSL systems collect sunlight using focusing mirrors that track the Sun and use optical fibers to transmit it inside the building to supplement conventional lighting. In single-story applications these systems are able to transmit 50% of the direct sunlight received.

Solar lights that charge during the day and light up at dusk are a common sight along walkways.[citation needed]

Although daylight saving time is promoted as a way to use sunlight to save energy, recent research has been limited and reports contradictory results: several studies report savings, but just as many suggest no effect or even a net loss, particularly when gasoline consumption is taken into account. Electricity use is greatly affected by geography, climate and economics, making it hard to generalize from single studies.[

Energy from the Sun




Solar energy, radiant light and heat from the sun, has been harnessed by humans since ancient times using a range of ever-evolving technologies. Solar radiation, along with secondary solar-powered resources such as wind and wave power, hydroelectricity and biomass, account for most of the available renewable energy on earth. Only a minuscule fraction of the available solar energy is used.

Solar powered electrical generation relies on heat engines and photovoltaics. Solar energy's uses are limited only by human ingenuity. A partial list of solar applications includes space heating and cooling through solar architecture, potable water via distillation and disinfection, daylighting, solar hot water, solar cooking, and high temperature process heat for industrial purposes.To harvest the solar energy, the most common way is to use solar panels.


Solar technologies are broadly characterized as either passive solar or active solar depending on the way they capture, convert and distribute solar energy. Active solar techniques include the use of photovoltaic panels and solar thermal collectors to harness the energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light dispersing properties, and designing spaces that naturally circulate air.

The Earth receives 174 petawatts (PW) of incoming solar radiation (insolation) at the upper atmosphere. Approximately 30% is reflected back to space while the rest is absorbed by clouds, oceans and land masses. The spectrum of solar light at the Earth's surface is mostly spread across the visible and near-infrared ranges with a small part in the near-ultraviolet.


Earth's land surface, oceans and atmosphere absorb solar radiation, and this raises their temperature. Warm air containing evaporated water from the oceans rises, causing atmospheric circulation or convection. When the air reaches a high altitude, where the temperature is low, water vapor condenses into clouds, which rain onto the Earth's surface, completing the water cycle. The latent heat of water condensation amplifies convection, producing atmospheric phenomena such as wind, cyclones and anti-cyclones. Sunlight absorbed by the oceans and land masses keeps the surface at an average temperature of 14 °C. By photosynthesis green plants convert solar energy into chemical energy, which produces food, wood and the biomass from which fossil fuels are derived.

Yearly Solar fluxes & Human Energy Consumption
Solar 3,850,000 EJ
Wind 2,250 EJ
Biomass 3,000 EJ
Primary energy use (2005) 487 EJ
Electricity (2005) 56.7 EJ
The total solar energy absorbed by Earth's atmosphere, oceans and land masses is approximately 3,850,000 exajoules (EJ) per year. In 2002, this was more energy in one hour than the world used in one year. Photosynthesis captures approximately 3,000 EJ per year in biomass. The amount of solar energy reaching the surface of the planet is so vast that in one year it is about twice as much as will ever be obtained from all of the Earth's non-renewable resources of coal, oil, natural gas, and mined uranium combined.

From the table of resources it would appear that solar, wind or biomass would be sufficient to supply all of our energy needs, however, the increased use of biomass has had a negative effect on global warming and dramatically increased food prices by diverting forests and crops into biofuel production. As intermittent resources, solar and wind raise other issues.

Solar energy can be harnessed in different levels around the world. Depending on a geographical location the closer to the equator the more "potential" solar energy is available.

Pages

HOME